KINETROL LTD.
Model Q-CRD Dashpot

SPECIFICATION

Rate
Fixed

Max. shaft end load
20 lbf / 89 N

Max. shaft side load
5.2 lbf / 23 N

Ambient temperature range
0° to 60°C

Frictional torque
0.025 lbf.ins / 0.003 Nm typical

Shaft material
Mild steel 220M07

Body material
Zinc alloy Mazak 3

Weight
.47 lbs / .21 kg

The Q-CRD continuous rotation dashpot has a fixed rate performance and is complementary to the larger adjustable rate S-CRD and T-CRD. It proves to be economical where use of the other models may not be justified.

This dashpot is available with a double ended shaft (code suffix ‘-DE’). In this version, due to the extra shaft seal, there is greater stiction torque (less than 0.025 lbf.ins/seal).

VISCOSITIES AVAILABLE

100; 350; 500; 1,000; 2,000; 5,000; 12,500; 30,000; 100,000; 250,000; 500,000 cSt

ORDERING CODES

Q-CRD-(Filling Viscosity)
Example: Q-CRD-30,000 has 30,000 cSt fluid

Kinetrol LTD. Rotary dashpots distributed through:

www.efdyn.com
KINETROL LTD.
Model Q-CRD Dashpot

TEMPERATURE EFFECTS

Damping rate is reduced by increases in fluid temperature (and increased by reduction in temperature). The graph below indicates the percentage change in damping rate with temperature, relative to the rate quoted at 20°C.

Dashpots compensated for temperature change, to keep damping rate constant, can be special ordered.

In addition to the effect of ambient temperature, heating of the dashpot above ambient is caused by the power absorbed by the damping action. Power dissipation limits are given for 20°C ambient. At temperatures above 20°C these power limits are de-rated by a factor:

\[(\frac{T_L - T_A}{T_L - 20})\]

where \(T_L\) = Limit Temperature and \(T_A\) = Ambient Temperature

![Graph showing percentage change in damping rate with temperature]

CONVERSION FACTORS

<table>
<thead>
<tr>
<th>1 rad = 57.3°</th>
<th>1 RPM = 0.1047 rad/s</th>
<th>1 lbf.ins = 0.113 Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Nm = 8.85 lbf.ins</td>
<td>1 lbf = 4.45 N</td>
<td>9.81N = 1 kgf = 1 kp</td>
</tr>
</tbody>
</table>

GENERAL NOTES

1. For calculation purposes the rotation speed of the dashpot is given in RADIANS per second (1 radian = 57.3°). The significance of a radian is that if, for example, a 1 meter radius lever rotates through 1 radian, the end of the lever moves 1 meter, a distance equal to the radius.

2. Damping RATE is defined here as TORQUE divided by ROTATION SPEED. Note that a dashpot with a high rate may not necessarily be working at a high torque. For example, a dashpot may have a rate of 100 Nm/rad/s; however, it may be rotated at 1/10 rad/s so that the damping torque produced is 10 Nm which is not numerically equal to the rate.

Kinetrol LTD. Rotary dashpots distributed through: